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Abstract

The problem of the convergence of the solutions of problems of plasticity theory, with a yield condition which depends on
the hydrostatic stress, to solutions based on classical plasticity theory with von Mises or Tresea conditions is considered, with a
particular choice of the parameters of the material model. For the case of axisymmetric flow of material in a channel with converging
and diverging walls, solutions according to two plasticity theories with a yield condition which depends on the hydrostatic stress
are compared with the classical solution. It is shown that only the solution using Spencer’s model shows all the main features of
the classical solution. As the internal criterion of the choice of the preferred plasticity theory when examining a special class of
problems, it is suggested that the criterion of the convergence of the solutions to the solutions of classical plasticity theory should
be used.
© 2007 Elsevier Ltd. All rights reserved.

Theories of rigid–plastic bodies, based on yield conditions which depend on the hydrostatic stress but including the
incompressibility equation, are used to describe the motion of granulated and granular materials and the deformation of
certain metal alloys.1–4 In the latter case, the stress states both for negative and positive hydrostatic stresses are of interest.

For the class of plasticity theories considered, the qualitative behaviour of the solutions near surfaces with maximum
permissible friction stresses (the maximum friction law) can depend greatly on the constitutive relations. This has been
shown5 for certain semi-analytical solutions obtained within the framework of plane deformation, for the models of
Spencer3 and Hill (for the model equations, see, for example, Ref. 6). An analysis has been made carried out7 of the
solutions obtained8,9 for the compression of a material, obeying the Spencer and Hill models, between two plates
rotating about a common axis, and of the solutions obtained7 on the assumption that the plates stretch the material. It
turned out that the qualitative behaviour of the solutions can be influenced both by the model of the material and by
the direction of rotation of the plates. All the solutions examined earlier7 were obtained within the framework of plane
deformaton, and the analysis of the qualitative differences was based on the properties of characteristics of the system
of equations. It is therefore of interest to analyse non-planar flows in cases when the system of equations is not of the
hyperbolic type. Such conditions are satisfied by the axisymmetric flow of a medium obeying a conical yield condition
and the condition proposed by Ishlinskii1 of coaxiality of the stress and strain rate tensors.

� Prikl. Mat. Mekh. Vol. 71, No. 1, pp. 122–131, 2007.
E-mail address: goldst@ipmnet.ru (R.V. Goldstein).

0021-8928/$ – see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2007.03.004

mailto:goldst@ipmnet.ru
dx.doi.org/10.1016/j.jappmathmech.2007.03.004


112 S.Ye. Aleksandrov, R.V. Goldstein / Journal of Applied Mathematics and Mechanics 71 (2007) 111–119

Thus, the adopted model essentially extends Hill’s model, which was proposed for the state of plane deformaton
(see Ref. 6), to the case of axisymmetric deformaton. A suitable model problem corresponding to the requirements
mentioned above is that of the flow of material through an infinite channel with converging or diverging walls, when
the maximum possible friction stresses are acting on the walls. In classical plasticity theory, based on an arbitrary yield
condition independent of the hydrostatic pressure, the solution of the corresponding problem is known for converging
flow,10 while for diverging flow it can be obtained in a similar way and differs only in sign. The solution for the
converging flow of a material obeying Spencer’s model is also known;3 this solution retains all the main features of the
classical solution,10 including the asymptotic singular behaviour of functions when the friction surface is approached.
Solutions have been obtained11–14 for other models of materials.

1. Statement of the problem

1.1. The General solution

We will consider the problem of the flow of material through an infinite conical channel with converging or diverging
walls, on the assumption that the maximum possible friction stresses are acting on the walls. A diagram of the flow in
a spherical system of coordinates r, �, � is shown in Fig. 1, where �0 is the flare angle of the conical channel. We will
assume10 that the velocity components u� = u� = 0. Then the incompressibility equation gives10

(1.1)

where u(�) > 0 is an arbitrary function, Q is the flow rate of the material and � = ±1, the upper sign corresponding
to diverging flow, and the lower sign to converging flow.

From Eq. (1.1) it is possible to find the non-zero components of the strain rate tensor in the form

(1.2)

We will adopt a yield condition of the form

(1.3)

where � and �0 are constants of the material, � = �ij�ij/3 is the hydrostatic stress, �eq = √
3/2(sijsij)1/2 is the

equivalent stress, �ij are the components of the stress tensor and sij = �ij − ��ij . In the space of the principal stresses,
condition (1.3) is represented in the form of a conical surface with its apex on the hydrostatic axis. In classical plasticity
theory, for the von Mises yield condition, � = 0 and �0 is the yield point under uniaxial tension. The condition of
coaxiality of the stress and strain rate tensors can be written in the form

(1.4)

Fig. 1.
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where � > 0 is a coefficient of proportionality. Taking into account relations (1.2) and the identity

we obtain

(1.5)

Using these equations, and introducing the substitution

(1.6)

we can write condition (1.3) in the form

(1.7)

Taking into account relations (1.5) and (1.7), we will express the stresses �rr and ��� in the form

Furthermore, we will assume that 	 is independent of r. The equilibrium equations will then take the form

(1.8)

These equations are consisent if

(1.9)

where A is a constant and p(�) is an arbitrary function of �. Substituting expression (1.9) into Eq. (1.8), we obtain
equations for p(�) and 	(�)

(1.10)

The second equation of this system can be rewritten in the form

(1.11)

The coefficient of the derivative in the first equation of system (1.10) vanishes when 	 = 	c = ± arccos(�/3).
Suppose 	 = 	c when � = �c. Then, in the general case, close to this point, the equation can be represented in the form

(1.12)

where the upper sign corresponds to the condition 	c > 0, and the lower sign to the condition 	c < 0.
Integrating Eq. (1.12), close to the point � = �c, we obtain

(1.13)

The left-hand side of this equation does not change sign on passing through the point 	 = 	c, while the right-hand side
does change sign on passing through the corresponding point � = �c. Consequently, a solution exists only for one side
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of the surface � = �c, and, if the surface � = �c is situated in the plastic zone, then the condition �c = �0 should be
satisfied.

From relation (1.4) it is possible to obtain

(1.14)

Then, from Eqs. (1.2) and (1.6) we have the equation

(1.15)

in which, changing to differentiation with respect to 	 using the first equation of system (1.10), we obtain

(1.16)

2. Converging flow

In the case of converging flow, the friction stresses are directed away from the point O (Fig. 1). Therefore, from
relations (1.6) it follows that sr� > 0 and sin 	 > 0. Furthermore, from the second equation of system (1.2) we establish
that 
�� < 0, and then, from relations (1.4) and (1.6), it follows that s�� < 0 and cos 	 < 0. Thus, the angle 	 can vary
in the range

(2.1)

The angle 	c, which in this case is positive, lies outside the limits of the interval (2.1), and therefore the first equation
of system (1.10) and then Eq. (1.11) can be solved numerically in the entire interval 0 ≤ � ≤ �0.

One of the boundary conditions for the first equation of system (1.10) is the condition on the axis of symmetry

The second condition, which is necessary for determining the constant A, must be formulated on the friction surface
� = �0. Bearing in mind the interval (2.1), the maximum friction law in this case can be formulated as

Since |tg	| → ∞ when 	 → �/2, it follows that, near the friction surface, the solution of Eq. (1.16) has the form

(2.2)

where u0 is the constant of integration. Since infinite velocities have no physical meaning, the inequality �(�/2, �0) < 0
must be satisfied. This condition must be ensured by the magnitude of A. Then, from expression (2.2) it follows that
u = 0 on the friction surface, i.e. sticking occurs. Nonetheless, the magnitude of the derivative du/d� can approach
infinity when � → �0. Since the derivative d	/d� is bounded, from solution (2.2) it follows that |du/d�| → ∞ when
� → �0 if

(2.3)

The relation u(	) can be determined by numerical integration. From Eq. (1.16) we obtain

(2.4)

where c is the constant of integration, while � in the integrand is a known function of �, owing to the solution of the
first equation of system (1.10). Bearing in mind relations (1.1), (1.10) and (2.4), and also the range of variation of 	,
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Fig. 2.

for the determination of c we obtain the equation

(2.5)

where, in the integrand, � is a known function of 	 from the solution of the first equation of system (1.10).
The numerical solution of the first equation of system (1.10) under the conditions 	 = � when � = 0 and 	 = �/2

when � = �0 determines the magnitude of A, the dependence of which on �0 is shown in Fig. 2 for certain values of
� (the descending curve). Here also we show the dependence on �0 of the quantity B, which defines the behaviour
of the velocity near the friction surface in accordance with expressions (2.2). It can be seen that inequality (2.3) is
satisfied for all the cases considered. Consequently, in the solution obtained, |du/d�| → ∞ when � → �0. Knowing
the relation �(	), it is possible to find the quantity c from Eq. (2.5), and then u(	) from relation (2.4). Thus, we obtain
the relation u(�), which determines the velocity profile in accordance with Eq. (1.1) in parametric form. This relation
is shown in Fig. 3 for some values of � when �0 = 30◦. It can be seen that, in a very narrow region near the friction
surface, high velocity gradients arise. It is interesting to note that this narrow region arises not only on the scale of the
characteristic size of the process but also in the zone where asymptotic representation (2.2) is used. In the numerical
solution, representation (2.2) was used in the range �/2 ≤ 	 ≤ �/2 + 0.001. Fig. 3 also shows the behaviour of the
function u(	) in this range when �0 = 30◦.

Fig. 3.
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3. Diverging flow

In the case of diverging flow, the friction stresses are directed towards the point O (Fig. 1), and therefore from
relations (1.6) it follows that sr� < 0 and sin 	 < 0. Furthermore, from the second equation of (1.2) we establish that

�� > 0, and from relations (1.4) and (1.6) it then follows that s�� > 0 and cos 	 > 0. Thus, the angle 	 can vary in the
range

(3.1)

The angle 	c, which in this case is negative, lies within this range, and, as follows from Eq. (1.13), the maximum
possible friction stresses arise if 	 = 	c and � = �0 = �c. This condition is the maximum friction law in the case under
examination. The second boundary condition is the condition on the axis of symmetry

Taking Eq. (1.12) into account, Eq. (1.16) near the friction surface can be rewritten in the form

and after integration we obtain

(3.2)

where u1 is the constant of integration. From relation (3.2) it follows that on the friction surface u = u1 �= 0, and thus
slip occurs on this surface. Furthermore, since the angle 	 varies in the range −�/2 < 	c ≤ 	 ≤ 0, it follows from Eq.
(1.15) that the shear strain rate is bounded everwhere.

Assuming that close to the axis of symmetry

(3.3)

and substituting this expression into the first equation of system (1.10), we obtain

(3.4)

The ranges of variation of 	 and � assume that K < 0. For the actual values of �, the inequality � < 3 is satisfied, and
therefore it follows from Eq. (3.4) that A must satisfy the conditions

(3.5)

We will assume that the solution of the first equation of system (1.10) exists over the entire range 0 ≤ � ≤ �0 and
accordingly in the range −	c ≤ 	 ≤ 0. For this, it is necessary for the function �(	, �) not to vanish at any point of the
corresponding open ranges. In particular, one of the necessary critical conditions has the form �(	c, �0) = 0. From
this it is possible to find the critical value of A. A solution can exist provided

(3.6)

From the first inequality of (3.5) and (3.6) it can be seen that, when � > �c, the range of permissible values of A
is unlimited, while from the second inequality of (3.5) and (3.6) it follows that, when � < �c, this range is limited
and may even be empty. For � > �c, the solution of the first equation of system (1.10) under the formulated boundary
conditions may be obtained numerically without difficulties. This solution is shown in Fig. 4. For � < �c, the structure
of the solution is much more complex. A solution may not exist, and, when it does, it may be non-unique.
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Fig. 4.

For a more detailed description of the structure of the solution in this region, additional investigations are needed.
If a solution exists, the velocity field satisfies Eq. (3.2) near the friction surface, which is of greatest interest for the
purposes of the present paper.

The solution of Eq. (1.16) can be written in the form

(3.7)

where c1 is the constant of integration, and � in the integrand is a known function of �, owing to the solution of the
first equation of system (1.10). Bearing in mind relations (1.1), (1.10) and (3.7), and also the range of variation of 	,
for the determination of c1 we obtain the equation

(3.8)

In the factor in front of the exponent, � is a known function of 	 from the solution of the first equation of system (1.10).
Since the ralation �(	) was defined earlier, from Eq. (3.8) it is possible to find the value of c1, and then the value of

u(	) from Eq. (3.7). In this way, we obtain the relation u(�), which determines the velocity profile, in accordance with
Eq. (1.1), in parametric form. This relation is shown in Fig. 4 for some values of � when �0 = 30◦.

4. Comparison of the solutions, and conclusion

To complete the solution, it is necessary to integrate Eq. (1.11) for both types of flow. However, since the quantity A
and the function 	(�) have been determined, this integration presents no difficulties. Moreover, the stress distribution
is not essential for the purposes of the present investigation, and we will therefore focus below chiefly upon velocity
field analysis.

Comparing the nature of the velocity field behaviour in the vicinity of the friction surface in the case of converging
and diverging flows, as follows from representations (2.2) and (3.2), it can be seen that the solutions differ qualitatively
and correspond to different friction regimes (stick or slip). It is of interest to classify the known solutions, based on other
models of materials, in terms of this feature. These solutions were obtained for converging flow. However, for materials
with a yield condition not depending on the hydrostatic stress, and for materials obeying Spencer’s model,3 there is no
fundamental difference between converging and diverging flows. In solutions for rigid–ideally plastic material10 and
for Spencer’s model,3 a slipping regime arises. In solutions for a viscoplastic material11 and rigid–plastic hardening
material,12 a sticking regime should have arisen in accordance with the general theory.15–17. However, a direct check
ascertains that the solutions in Refs. 11,12 do not exist by the maximum friction law, since the structure of these
solutions does not enable the sticking condition to be satisfied. Nevertheless, for the creep theory model, which may
be regarded as a special case of a viscoplasticity model, a solution under the sticking condition exists and was obtained
earlier.13



118 S.Ye. Aleksandrov, R.V. Goldstein / Journal of Applied Mathematics and Mechanics 71 (2007) 111–119

Fig. 5.

The solution obtained for converging flow satisfies inequality (2.3), so that |du/d�| → ∞ as the friction surface is
approached. Here, the quantity B depends on the process parameters and the properties of the material (Fig. 2). The
velocity fields obtained earlier,3,10 are again such that |du/d�| → ∞ as the friction surface is approached. However,
in these solutions, the first singular term is always of the order of 1/

√
s, where s is the distance to the friction surface.

Moreover, such behaviour of the velocity field is a feature of the corresponding models18–20 and not of the specific
solution. The solution obtained for diverging flow leads to a velocity field with a bounded derivative du/d�. In this
sense, the given solution corresponds more to the well-known solution.13 However, its structure depends greatly on the
quantity � and, in particular, on the relation between � and �c (in exactly the same way as the flow of a two-layer material,
on the assumption that each layer obeys the model of a rigid–ideally plastic material.14). For �0 = 30◦ and � = 0.2,
the function u(�) is shown in Fig. 5 for diverging flow (the dashed curve), for converging flow (the dotted curve) and
for the flow of a rigid–ideally plastic material10 (the dot-dash curve). It can be seen that the radial velocity distributions
differ little at all points of the deformed region, with the exception of a very narrow zone close to the friction surface. It
seems that such a significant difference in behaviour of the solutions for similar boundary-value problem formulations
may be important in developing numerical methods for analysing more complex processes. Furthermore, the velocity
field largely determines the change in properties of the material during deformation. We know from experimental
investigations that the properties of metals in a narrow region close to the friction surface differ considerably from the
properties in the bulk of the material.21,22 Taking into account the large variety of models of plastic materials with
the yield condition which depends on the hydrostatic stress,3,6 a comparison of these experimental results with the
obtained behaviour of solutions may serve as one of the criteria for selecting a suitable model of the material.

The stress field in a solution based on the model of a rigid–ideally plastic material does not satisfy the necessary
condition ��� < 0 at all points of the friction surface. In particular, this has been pointed out earlier for plane flow.23,24

However, using a constant of integration, the range in which the noted condition is satisfied can be made as wide as
desired. The solution obtained also has this drawback, and the corresponding constant appears in the integration of Eq.
(1.11). Using relations (1.6), (1.7) and (1.9), we obtain

(3.9)

For converging flow, 	 = �/2 on the friction surface and A > 0 (Fig. 2), and therefore it follows from Eq. (3.9) that
there is always a region 0 ≤ r < r0 on the friction surface where ��� > 0. However, the value of r0 can be made as
small as desired. For diverging flow, 	 = 	c on the friction surface and A < 0 (Fig. 4), and therefore it follows from
relation (3.9) that there is always a region R0 < r on the friction surface where ��� > 0. However, the value of R0 can
be made as large as desired. This drawback of the solution has no effect on the general conclusions relating to the local
behaviour of solutions near the friction surface.
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